Articles | Volume 503
https://doi.org/10.5194/piodp-503-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/piodp-503-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
IODP3 Expedition 503 “Hadal Trench Tsunamigenic Slip History” Scientific Prospectus
Ken Ikehara
CORRESPONDING AUTHOR
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
Michael Strasser
Department of Geology, University of Innsbruck, Innsbruck, Austria
Lena Maeda
Institute for Marine-Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
Related authors
No articles found.
Marcel Ortler, Achim Brauer, Stefano C. Fabbri, Jean Nicolas Haas, Irka Hajdas, Kerstin Kowarik, Jochem Kueck, Hans Reschreiter, and Michael Strasser
Sci. Dril., 33, 1–19, https://doi.org/10.5194/sd-33-1-2024, https://doi.org/10.5194/sd-33-1-2024, 2024
Short summary
Short summary
The lake drilling project at Lake Hallstatt (Austria) successfully cored 51 m of lake sediments. This was achieved through the novel drilling platform Hipercorig. A core-log seismic correlation was created for the first time of an inner Alpine lake of the Eastern Alps. The sediments cover over 12 000 years before present with 10 (up to 5.1 m thick) instantaneous deposits. Lake Hallstatt is located within an UNESCO World Heritage area which has a rich history of human salt mining.
Patrick Oswald, Michael Strasser, Jens Skapski, and Jasper Moernaut
Nat. Hazards Earth Syst. Sci., 22, 2057–2079, https://doi.org/10.5194/nhess-22-2057-2022, https://doi.org/10.5194/nhess-22-2057-2022, 2022
Short summary
Short summary
This study provides the first regional earthquake catalogue of the eastern Alps spanning 16 000 years by using three lake paleoseismic records. Recurrence statistics reveal that earthquakes recur every 1000–2000 years in an aperiodic pattern. The magnitudes of paleo-earthquakes exceed the historically documented values. This study estimates magnitude and source areas for severe paleo-earthquakes, and their shaking effects are explored in the broader study area.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Cited articles
Adams, J.: Paleoseismicity of the Cascadia subduction zone: Evidence from turbidites off the Oregon-Washington margin, Tectonics, 9, 569–583, https://doi.org/10.1029/TC009i004p00569, 1990.
Arai, K., Inoue, T., Ikehara, K., and Sasaki, T.: Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku Earthquake, Earth Planet. Sc. Lett., 408, 9–15, https://doi.org/10.1016/j.epsl.2014.09.048, 2014.
Ashi, J., Sawada, R., Omura, A., and Ikehara, K.: Accumulation of an earthquake-induced extremely turbid layer in a terminal basin of the Nankai accretional prism, Earth Planets Space, 66, 51, https://doi.org/10.1186/1880-5981-66-51, 2014.
Bao, R., Strasser, M., McNichol, A. P., Haghipour, N., McIntyre, C., Wefer, G., and Eglinton, T. I.: Tectonically-triggered sediment and carbon export to the hadal zone, Nat. Commun., 9, 121, https://doi.org/10.1038/s41467-017-02504-1, 2018.
Barbot, S.: Frictional and structural controls of seismic super-cycles at the Japan trench, Earth Planet Space, 72, 63, https://doi.org/10.1186/s40623-020-01185-3, 2020.
Bernhardt, A., Melnick, D., Hebbeln, D., Lückge, A., and Strecker, M. R.: Turbidite paleoseismology along the active continental margin of Chile – Feasible or not?, Quaternary Sci. Rev., 12, 71–92, https://doi.org/10.1016/j.quascirev.2015.04.001, 2015.
Boston, B., Moore, G. F., Nakamura, Y., and Kodaira, S.: Outer-rise normal fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku, Earth Planets Space, 66, 135, https://doi.org/10.1186/1880-5981-66-135, 2014.
Chu, M., Bao, R., Strasser, M., Ikehara, K., Everest, J., Maeda, L., Hochmuth, K., Xu, L., McNichol, A., Bellanova, P., Rasbury, T., Kölling, M., Riedinger, N., Johnson, J., Luo, M., März, C., Straub, S., Jitsuno, K., Brunet, M., Cai, Z., Cattaneo, A., Hsiung, K., Ishizawa, T., Itaki, T., Kanamatsu, T., Keep, M., Kioka, A., McHugh, C., Nicallef, A., Pandey, D., Proust, J. N., Satoguchi, Y., Sawyer, D., Seibert, C., Silver, M., Virtassalo, J., Wang, Y., Wu, T.-W., and Zellers, S.: Earthquake-enhanced dissolved carbon cycles in ultra-deep ocean sediments, Nat. Commun., 14, 5427, https://doi.org/10.1038/s41467-023-41116-w, 2023.
De Batist, M., Talling, P., Strasser, M., and Girarclos, S.: Subaquatic paleoseismology: records of large Holocene earthquakes in marine and lacustrine sediments, Mar. Geol., 384, 1–3, https://doi.org/10.1016/j.margeo.2017.04.010, 2017.
DeMets, C., Gordon, R. G., and Argus, D. F.: Geologically current plate motions, Geophys. J. Int., 181, 1–80, https://doi.org/10.1111/j.1365-246X.2009.04491.x, 2010.
Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., and Kaneda, Y.: The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis, Science, 334, 1240, https://doi.org/10.1126/science.1211554, 2011.
Goldfinger, C., Hans Nelson, C., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E., Gutierrez-Pator, J., Eriksson, A. T., Gracia, E., Dunhill, G., Enkin, R. J., Dallimore, A., and Vallier, T.: Turbidite event history – Methods and implications for Holocene paleosismicity of the Cascadia subduction zone, USGS Prof. Pap., 1661-F, 184 pp., https://doi.org/10.3133/pp1661f, 2012.
Goldfinger, C., Galer, S., Beeson, J., Hamilton, T., Black, B., Romsos, C., Patton, J., Hans Nelson, C., Haumann, R., and Morey, A.: The importance of site selection, sediment supply, and hydrodynamics: a case study of submarine paleoseismology on the northern Cascadia margin, Washington USA, Mar. Geol., 384, 4–46, https://doi.org/10.1016/j.margeo.2016.06.008, 2017.
Goto, K., Ishizawa, T., Ebina, Y., Imamura, F., Sato, S., and Udo, K.: Ten years after the 2011 Tohoku-oki earthquake and tsunami: Geological and environmental effects and implications for disaster policy changes, Earth Sci. Rev., 212, 103417, https://doi.org/10.1016/j.earscirev.2020.103417, 2021.
Goto, T., Satake, K., Sugai, T., Ishibe, T., Harada, T., and Gusman A. R.: Tsunami history over the past 2000 years on the Sanriku coast, Japan, determined using gravel deposits to estimate tsunami inundation behavior, Sediment. Geol., 382, 85–102, https://doi.org/10.1016/j.sedgeo.2019.01.001, 2019.
Heezen, B. C. and Ewing, M.: Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake, Am. J. Sci., 250, 849–873, 1952.
Heezen, B. C. and Ewing, M.: Orléansville earthquake and turbidity currents, AAPG Bul., 39, 2505–2514, https://doi.org/10.1306/5CEAE2E6-16BB-11D7-8645000102C1865D, 1955.
Howarth, J. D., Orpin, A. R., Kaneko, Y., Strachan, L. J., Nodder, S. D., Mountjoy, J. J., Barnes, P. M., Bostock, H. C., Holden, C., Jones, K., and Cağatay, M. N.: Calibrating the marine turbidite paleoseismometer using the 2016 Kaikōura earthquake, Nat. Geosci., 14, 161–167, https://doi.org/10.1038/s41561-021-00692-6, 2021.
Hsu, S. K., Kuo, J., Lo, C. L., Tsai, C. H., Doo, W. B., Ku, C. Y., and Sibuet, J. C.: Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan, Terr. Atmos. Ocean. Sci., 19, 767–772, https://doi.org/10.3319/TAO.2008.19.6.767(PT), 2008.
Ide, S., Baltay, A., and Beroza, G. C.: Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake, Science, 332, 1426–1429, https://doi.org/10.1126/science.1207020, 2011.
Ikehara, K., Kanamatsu, T., Nagahashi, Y., Strasser, M., Fink, H., Usami, K., Irino, T., and Wefer, G.: Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years, Earth Planet. Sc. Lett., 445, 48–56, https://doi.org/10.1016/j.epsl.2016.04.009, 2016.
Ikehara, K., Usami, K., Kanamatsu, T., Arai, K., Yamaguchi, A., and Fukuchi, R.: Spatial variability in sediment lithology and sedimentary processes along the Japan Trench: Use of deep-sea turbidite records to reconstruct past large earthquakes, in: Tsunamis: Geology, Hazards and Risks, edited by: Scourse, E. M. Chapman, N. A., Tappin, D. R., and Wallis, S. R., Geological Society of London Spec. Pub. No. 456, 75–89, https://doi.org/10.1144/SP456.9, 2018.
Ikehara, K., Usami, K., and Kanamatsu, T.: Repeated occurrence of surface-sediment remobilization along the landward slope of the Japan Trench by great earthquakes, Earth Planets Space, 72, 114, https://doi.org/10.1186/s40623-020-01241-y, 2020.
Ikehara, K., Usami, K., Irino, T., Omura, A., Jenkins, R. G., and Ashi, J.: Characteristics and distribution of the event deposits induced by the 2011 Tohoku-oki earthquake and tsunami offshore of Sanriku and Sendai, Japan, Sediment. Geol., 411, 105791, https://doi.org/10.1016/j.sedgeo.2020.105791, 2021.
Ikehara, K., Strasser, M., Everest, J., Maeda, L., Hochmuth, K., and the Expedition 386 Scientists: Expedition 386 Preliminary Reports: Japan Trench Paleoseismology, International Ocean Discovery Program, College Station, USA, https://doi.org/10.14379/iodp.pr.386.2023, 2023a.
Ikehara, K., Usami, K., and Kanamatsu, T.: How large peak ground acceleration by large earthquakes could generate turbidity currents along the slope of northern Japan Trench, Japan, Prog. Earth Planet. Sci., 10, 8, https://doi.org/10.1186/s40645-023-00540-8, 2023b.
Ikehara, K., Strasser, M., Nakamura, Y., Kanamatsu, T., Rasbury, T., Itaki, T., Nagahashi, Y., Johnson, J., Huang, J.-J., Bao, R., Ishizawa, T., and Moernaut, J.: TRCKing past earthquakes in the sediment record in a Japan Trench basin: Applying submarine paleoseismology in the Deep-time trench-fill sediments (JTRACK Deep-Time Paleoseismology), IODP drilling proposal 1010-APL2, https://www.iodp.org/docs/proposals/1244-1010-apl2-ikehara-cover/file (last access: 30 May 2025), 2024.
Ishizawa, T., Goto, K., Nishimura, Y., Miyairi, Y., Sawada, C., and Yokoyama, Y.: Paleotsunami history along the northern Japan trench based on sequential dating of the continuous geological record potentially inundated only by large tsunamis, Quaternary Sci. Rev., 279, 107381, https://doi.org/10.1016/j.quascirev.2022.107381, 2022.
Inazu, D., Ito, Y., Hino, R., and Tanikawa, W.: Abrupt water temperature increases near seafloor during the 2011 Tohoku earthquake, Prog. Earth Planet. Sci., 10, 24, https://doi.org/10.1186/s40645-023-00556-0, 2023.
International Ocean Discovery Program: IODP Sample, Data, and Research Request Manager, https://web.iodp.tamu.edu/SDRM/#, last access: 26 May 2025a.
International Ocean Discovery Program: IODP Site Survey Data Bank, https://ssdb.iodp/org/, last access: 30 May 2025b.
International Ocean Drilling Programme: Scientific Ocean Drilling Programs Sample, Data, and Obligations Policy, https://iodp3.org/documents/sample-data-obligations-policy/ (last access: 15 May 2025), 2024.
Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M., and Priede, I. G.: Hadal trenches: the ecology of the deepest places on Earth, Trends Ecol. Evol., 25, 190–197, https://doi.org/10.1016/j.tree.2009.09.009, 2010.
Japan Agency for Marine-Earth Science and Technology: Deep-sea scientific drilling vessel Chikyu, https://www.jamstec.go.jp/e/about/equipment/ships/chikyu.html, last access: 30 May 2025.
Kanamatsu, T., Ikehara, K., and Hsiung, K.-H.: Stratigraphy of deep-sea marine sediment using paleomagnetic secular variation: Refined dating of turbidite relating to giant earthquake in Japan Trench, Mar. Geol., 443, 106669, https://doi.org/10.1016/j.margeo.2021.106669, 2022.
Kanamatsu, T., Ikehara, K., and Hsiung, K.-H.: Submarine paleoseismology in the Japan Trench of northeastern Japan: turbidite stratigraphy and sedimentology using paleomagnetic and rock-magnetic analyses, Prog. Earth Planet. Sci., 10, 16, https://doi.org/10.1186/s40645-023-00545-3, 2023.
Kawagucci, S., Yoshida, Y., Noguchi, T., Honda, M. C., Uchida, H., Ishibashi, H., Nakagawa, F., Tsunogai, U., Okamura, K., Takaki, Y., Nunoura, T., Miyazaki, J., Hirai, M., Lin, W., Kitazato, H., and Takai, K.: Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake, Sci. Rep., 2, 1–7, https://doi.org/10.1038/srep00270, 2012.
Kioka, A., Schwestermann, T., Moernaut, J., Ikehara, K., Kanamatsu, T., Eglinton, T., and Strasser, M.: Event stratigraphy in a hadal oceanic trench: The Japan Trench as sedimentary archive recording recurrent giant subduction zone earthquakes and their role in organic carbon export to the deep sea, Front. Earth Sci., 7, 319, https://doi.org/10.3389/feart.2019.00319, 2019a.
Kioka, A., Schwestermann, T., Moernaut, J., Ikehara, K., Kanamatsu, T., McHugh, C., dos Santos Ferreira, C., Wiemer, G., Haghipour, N., Kopf, A., Eglinton, T., and Strasser, M.: Megathrust earthquake drives drastic organic carbon supply to the hadal trench, Sci. Rep., 9, 1553, https://doi.org/10.1038/s41598-019-38834-x, 2019b.
Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N., Kaneda, Y., and Taira, A.: Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake, Nat. Geosci., 5, 646–650, https://doi.org/10.1038/ngeo1547, 2012.
Kodaira, S., Nakamura, Y., Yamamoto, Y., Obana, K., Fujie, G., No, T., Kaiho, Y., Sato, T., and Miura, S.: Depth-varying structural characters in the rupture zone of the 2011 Tohoku-oki earthquake, Geosphere, 13, 1408–1424, https://doi.org/10.1130/GES01489.1, 2017.
Kodaira, S., Fujiwara, T., Fujie, G., Nakamura, Y., and Kanamatsu, T.: Large coseismic slip to the trench during the 2011 Tohoku-Oki Earthquake, Annu. Rev. Earth Pl. Sc., 48, 321–343, https://doi.org/10.1146/annurev-earth-071719-055216, 2020.
Kodaira, S., Iinuma, T., and Imai, K.: Investigating a tsunamigenic megathrust earthquake in the Japan Trench, Science, 371, eabe1169, https://doi.org/10.1126/science.abe1169, 2021.
Luo, M., Zheng, M., Wallmann, K., Dale, A.W., Strasser, M., Torres, M.E., Koelling, M., Riedinger, N., Marz, C., Rasbery, T., Bao, R., Itaki, T., Ikehara, K., Johnson, J.E., Bellanova, P., Nakamura, Y., Yu, M., Xie, J. and Chen, D.: Rapid burial and intense degradation of organic matter drives active silicate weathering in the subsurface sediments of the ocean's deepest realm, Geology, 53, 636–641, https://doi.org/10.1130/G53131.1, 2025.
McHugh, C. M., Seeber, L., Braudy, N., Cormier, M.-H., Davis, M. B., Diebold, J. B, Dieudonne, N., Douilly, R., Gulick, S. P. S., Hornbach, M. J., Johson III, H. E., Ryan Mishkin, K., Sorlien, C. C., Steckler, M. S., Symithe, S. J., and Templeton, J.: Offshore sedimentary effects of the 12 January 2010 Haiti earthquake, Geology, 39, 723–726, https://doi.org/10.1130/G31815.1, 2011.
McHugh, C. M., Kanamatsu, T., Seeber, L., Bopp, R., Cormier, M.-H., and Usami, K.: Remobilization of surficial slope sediment triggered by the A.D. 2011 Mw9 Tohoku-Oki earthquake and tsunami along the Japan Trench, Geology, 44, 391–394, https://doi.org/10.1130/G37650.1, 2016.
McHugh, C. M., Seeber, L., Rasbury, T., Strasser, M., Kioka, A., Kanamatsu, T., Ikehara, K., and Usami, K.: Isotopic and sedimentary signature of megathrust ruptures along the Japan subduction margin, Mar. Geol., 428, 106283, https://doi.org/10.1016/j.margeo.2020.106283, 2020.
Mountjoy, J., Howarth, J. D., Orpin, A. R., Barnes, P. M., Bowden, D. A., Rowden, A. A., Schimel, A. C. G., Holden, C., Horgan, H. J., Nodder, S. D., Patton, J. R., Lamarche, G., Gerstenberger, M., Micallef, A., Pallentin, A., and Kane, T.: Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins, Sci. Adv., 4, eaar3748, https://doi.org/10.1126/sciadv.aar3748, 2018.
Nakamura, Y., Kodaira, S., Miura, S., Regalla, C., and Takahashi, N.: High-resolution seismic imaging in the Japan Trench axis area off Miyagi, northeastern Japan, Geophys. Res. Lett., 40, 1713–1718, https://doi.org/10.1002/grl.50364, 2013.
Nakamura, Y., Fujiwara, T., Kodaira, S., Miura, S., and Obana, K.: Correlation of frontal prism structures and slope failures near the trench axis with shallow megathrust slip at the Japan Trench, Sci. Rep., 10, 11607, https://doi.org/10.1038/s41598-020-68449-6, 2020.
Nakamura, Y., Kodaira, S., Fujie, G., Yamashita, M., Obana, K., and Miura, S.: Incoming plate structure at the Japan Trench subduction zone revealed in densely spaced reflection seismic profiles, Prog. Earth Planet. Sci., 10, 45, https://doi.org/10.1186/s40645-023-00579-7, 2023.
Nakata, R., Hori, T., Miura, S., and Hino, R.: Presence of interplate channel layer controls of slip during and after the 2011 Tohoku-Oki earthquake through the frictional characteristics, Sci. Rep., 11, 6480, https://doi.org/10.1038/s41598-021-86020-9, 2021.
Noguchi, T., Tanikawa, W., Hirose, T., Lin, W., Kawagucci, S., Yoshida-Takashima, Y., Honda, M. C., Takai, K., Kitazato, H., and Okamura, K.: Dynamic process of turbidity generation triggered by the 2011 Tohoku-Oki earthquake, Geochem. Geophy. Geosy., 13, Q11003, https://doi.org/10.1029/2012GC004360, 2012.
Oguri, K., Kawamura, K., Sakaguchi, A., Toyofuku, T., Kasaya, T., Murayama, M., Fujikura, K., Glud, R. N., and Kitazato, H.: Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki earthquake, Sci. Rep., 3, 1915, https://doi.org/10.1038/srep01915, 2013.
Philibosian, B. and Meltzner, A. J.: Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide, Quaternary Sci. Rev., 214, 106390, https://doi.org/10.1016/j.quascirev.2020.106390, 2020.
Pickering, K. T. and Hiscott, R. N.: Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation, Wiley and American Geophysical Union, 657 pp., ISBN 9781118865491, 2015.
Pizer, C., Ikehara, K., Keep, M., Kioka, A., Kodaira, S., Miura, R., Moernaut, J., Nakamura, Y., and Strasser, M.: Geological evidence for repeated slip-to-the-trench style megathrust earthquakes at the Japan Trench, Geology, 53, 370–374, https://doi.org/10.1130/G52797.1, 2025.
Polonia, A., Bonatti, E., Camerlenghi, A., Lucchi, R. G., Panieri, G., and Gasperini, L.: Mediterranean megaturbidite triggered by the AD 365 Crete earthquake and tsunami, Sci. Rep., 3, 1285, https://doi.org/10.1038/srep01285, 2013.
Polonia, A., Vaiani, S. C., and de Lange, G. J.: Did the A.D. 365 Crete earthquake/tsunami trigger synchronous giant turbidity currents in the Mediterranean Sea?, Geology, 44, 191–194, https://doi.org/10.1130/G37486.1, 2016.
Polonia, A., Nelson, C. H., Romano, S., Vaiani, S. C., Colizza, E., Gasparotto, G., and Gasperini, L.: A depositional model for seismo-turbidites in confied basins based on Ionian Sea deposits, Mar. Geol., 384, 177–198, https://doi.org/10.1016/j.margeo.2016.05.010, 2017.
Pope, E. L., Talling, P. J., and Carter, L.: Which earthquakes trigger damaging submarine mass movements: Insights from a global record of submarine cable breaks?, Mar. Geol., 384, 131–146, https://doi.org/10.1016/j.margeo.2016.01.009, 2017.
Rasbury, T., Wooton, K., Koelling, M., McHugh, C. M., Keep, M., Strasser, M., Ikehara, K., Proust, J.-N., Silver, M., Johnson, J. E., Riedinger, N., Bao, R., Luo, M., Bellanova, P., März, C., Zellers, S., Sawyer, D., Le-Ber, E., Rydzy, M., Hochmuth, K., Straub, S., Everest, J., Maeda, L., Wu, T.-W., and Scientific Team of IODP Expedition 386: Boron isotopes from IODP Expedition 386 Japan Trench core porewaters, AGU Fall Meeting 2023, 11–15 December 2023, S44B-03, https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1322982 (last access: 9 July 2024), 2023.
Saffer, D. M. and Kopf, A. J.: Boron desorption and fractionation in subduction zone forearcs: Implications for the sources and transport of deep fluids, Geochem. Geophy. Geosy., 17, 4992–5008, https://doi.org/10.1002/2016GC006635, 2016.
Sano, Y., Hara, T., Takahata, N., Kawagucci, S., Honda, M., Nishio, Y., Tanigawa, W., Hasegawa, A., and Hattori, K.: Helium anomalies suggest a fluid pathway from mantle to trench during the 2011 Tohoku-oki earthquake, Nat. Commun., 5, 3084, https://doi.org/10.1038/ncomms4084, 2014.
Satake, K.: Geological and historical evidence of irregular recurrent earthquakes in Japan, Philos. T. Roy. Soc. A, 373, 20140375, https://doi.org/10.1098/rsta.2014.0375, 2015.
Sawai, Y.: Subduction zone paleoseismology along the Pacific coast of northeast Japan – progress and remaining problems, Earth-Sci. Rev., 208, 103261, https://doi.org/10.1016/j.earscirev.2020.103261, 2020.
Schottenfels, E., Regalla, C., and Nakamura, Y.: Influence of outer-rise faults on shallow décollement heterogeneity and sediment flux at the Japan trench, Seismica, 3, https://doi.org/10.26443/seismica.v3i1.386, 2024.
Schwestermann, T., Huang, J., Konzett, J., Kioka, A., Wefer, G., Ikehara, K., Moernaut, J., Eglinton, T. I., and Strasser, M.: Multivariate statistical and multi-proxy constraints on earthquake-triggered sediment remobilization processes in the central Japan Trench, Geochem. Geophy. Geosy., 21, e2019GC008861, https://doi.org/10.1029/2019GC008861, 2020.
Schwestermann, T., Eglinton, T. I., Haghipour, N., McNichol, A. P., Ikehara, K., and Strasser, M.: Event-dominated transport, provenance, and burial of organic carbon in the hadal Japan Trench, Earth Planet. Sc. Lett., 563, 116870, https://doi.org/10.1016/j.epsl.2021.116870, 2021.
Seeber, L., Mueller, C., Fujiwara, T., Arai, K., Soh, W., Djajadihardja, Y. S., and Cormier, M.-H.: Accretion, mass wasting, and partitioned strain over the 26 Dec 2004 Mw9.2 rupture offshore Aceh, northern Sumatra, Earth Planet. Sc. Lett., 263, 16–31, https://doi.org/10.1016/j.epsl.2007.07.057, 2007.
Shirasaki, Y., Ito, K., Kuwazuru, M., and Shimizu, K.: Submarine landslides as cause of submarine cable fault, Journal of Japan Society for Marine Survey and Technology, 24, 17–20, 2012 (in Japanese).
Strasser, M., Kölling, M., dos Santos Ferreira, C., Fink, H. G., Fujiwara, T., Henkel, S., Ikehara, K., Kanamatsu, T., Kawamura, K., Kodaira, S., Romer, M., Wefer, G., R/V Sonne Cruse SO219A, and JAMSTEC Cruise MR12-E01 scientists: A slump in the trench: Tracking the impact of the 2011 Tohoku-Oki earthquake, Geology, 41, 935–938, https://doi.org/10.1130/G34477.1, 2013.
Strasser, M., Ikehara, K., Everest, J., and the Expedition 386 Scientists: Japan Trench Paleoseismology, Proceedings of the International Ocean Discovery Program, 386, College Station, USA, https://doi.org/10.14379/iodp.proc.386.2023, 2023.
Strasser, M., Ikehara, K., Pizer, C., Itaki, T., Satoguchi, Y., Kioka, A., McHugh, C., Proust, J.-N., Sawyer, D., IODP Expedition 386 Expedition Management Team, and IODP Expedition 386 Science Party: Japan Trench Event Stratigraphy: First results from IODP giant piston coring in a deep-sea trench to advance subduction zone paleoseismology, Mar. Geol., 477, 107387, https://doi.org/10.1016/j.margeo.2024.107387, 2024.
Sumner, E. J., Siti, M. I., McNeill, L. C., Talling, P. J., Henstock, T. J., Wynn, R. B., Djajadihardja, Y. S., and Permana, H.: Can turbidites be used to reconstruct a paleoearthquake record for the central Sumatran margin?, Geology, 41, 763–766, https://doi.org/10.1130/G34298.1, 2013.
Talling, P. J.: On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings, Mar. Geol., 352, 155–182, https://doi.org/10.1016/j.margeo.2014.02.006, 2014.
Tsuru, T., Park, J.-O., Takahashi, N., Kodaira, S., Kido, Y., Kaneda, Y., and Kono, Y.: Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data, J. Geophys. Res.-Sol. Ea., 105, 16403–16413, https://doi.org/10.1029/2000JB900132, 2000.
Uchida, N. and Bürgmann, R.: A decade of lessons learned from the 2011 Tohoku-Oki Earthquake, Rev. Geophys., 59, e2020RG000713, https://doi.org/10.1029/2020RG000713, 2021.
Uchida, N. and Matsuzawa, T.: Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from small repeating earthquake data, Earth Planets Space, 63, 30, https://doi.org/10.5047/eps.2011.07.006, 2011.
Ueda, H., Kitazato, H., Jamieson, A., and Pressure Drop Ring of Fire Expedition 2022 Japan Cruise Leg2 science team: The submarine fault scarp of the 2011 Tohoku-oki Earthquake in the Japan Trench, Commun. Earth Environ., 4, 476, https://doi.org/10.1038/s43247-023-01118-4, 2023.
Usami, K., Ikehara, K., Kanamatsu, T., and McHugh, C. M.: Supercycle in great earthquake recurrence along the Japan Trench over the last 4000 years, Geosci. Lett., 5, 11, https://doi.org/10.1186/s40562-018-0110-2, 2018.
Usami, K., Ikehara, K., Kanamatsu, T., Kioka, A., Schwestermann, T., and Strasser, M.: The link between upper-slope submarine landslides and mass transport deposits in the hadal trenchs, in: Understanding and Reducing Landslide Disaster Risk, 1, Sendai Landslide Partnerships and Kyoto Landslide Commitment, edited by: Sassa, K., Mikoš, M., Sassa, S., Bobrowsky, P. T., Takara, K., and Dang, K., Springer, Berlin, Heidelberg, Germany, 361–367, https://doi.org/10.1007/978-3-030-60196-6_26, 2021.
von Huene, R. and Lallemand, S.: Tectonic erosion along the Japan and Peru convergent margins, Geol. Soc. Am. Bull., 102, 704–720, https://doi.org/10.1130/0016-7606(1990)102<0704:TEATJA>2.3.CO;2, 1990.
Short summary
Unexpected shallow and large slip on the plate boundary fault during the 2011 Tōhoku-oki earthquake contributed to a large tsunami. However, our knowledge on the past history of such slips is limited due to the long recurrence interval of the events. IODP3 Expedition 503 recovers the whole trench-fill sequence in the central Japan Trench to understand the nature and recurrence of hadal trench tsunamigenic slips and their earthquake-related carbon accumulation and element cycles.
Unexpected shallow and large slip on the plate boundary fault during the 2011 Tōhoku-oki...